

$9.00 \mathrm{am}-11.15 \mathrm{am} \quad$（ $21 / 4$ hours）

This paper must be answered in English

INSTRUCTIONS

1．After the announcement of the start of the examination，you should first write your Candidate Number in the space provided on Page 1 and stick barcode labels in the spaces provided on Pages 1 and 3.

2．This paper consists of THREE sections， $\mathrm{A}(1), \mathrm{A}(2)$ and B．

3．Attempt ALL questions in this paper．Write your answers in the spaces provided in this Question－ Answer Book．Do not write in the margins．Answers written in the margins will not be marked．

4．Supplementary answer sheets will be supplied on request．Write your Candidate Number，mark the question number box and stick a barcode label on each sheet，and fasten them with string INSIDE this book．

5．Unless otherwise specified，all working must be clearly shown．

6．Unless otherwise specified，numerical answer should be either exact or correct to 3 significant figures．

7．The diagrams in this paper are not necessarily drawn to scale．

8．No extra time will be given to candidates for sticking on the barcode labels or filling in the question number boxes after the＇Time is up＇announcement．

©學友社 保留版權

Hok Yau Club
All Rights Reserved 2016

Please stick the barcode label here．

Candidate Number

\square

	Marker＇s Use Only	Examiner＇s Use Only
	Marker No．	Examiner No．
Question No．	Marks	Marks
1－2		
3－4		
5－6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
Total		

SECTION A (1) (35 marks)

1. Simplify $\frac{\left(x^{4} y^{-3}\right)^{2}}{x^{-4} y^{7}}$ and express your answer with positive indices.
\qquad
\qquad
\qquad
\qquad
2. Make s the subject of the formula $t(2 s-r)=4(s-5 t)$.
\qquad

Answers written in the margins will not be marked.
3. Factorize
(a) $2 p^{2}+p q-6 q^{2}$,
(b) $2 p^{2}+p q-6 q^{2}+9 q-6 p$.
4. Andy buys a toy then sells the toy to Betty at a profit of 20%. Later, Betty sells the toy to Calvin at a loss of 25%. It is given that Andy gains \$28.
(a) Find the price of the toy for Andy to purchase it.
(b) How much does Calvin spend on buying the toy?
\qquad
Answers written in the margins will not be marked.
5. In a kindergarten, the ratio of the number of girls to that of boys is $5: 4$. If the number of girls is increased by 72 , then the number of girls will be twice the number of boys. Find the difference of the number of girls and the number of boys.
6. Consider the compound inequality

$$
\frac{1-4 x}{2} \geq 9 \text { or } 5-x<0 \quad \cdots \cdots(*)
$$

(a) Solve (*).
(b) Write down the greatest negative integer satisfying $\left({ }^{*}\right)$.

Answers written in the margins will not be marked.
7. The coordinates of the points P and Q are $(-4,5)$ and $(4,-8)$ respectively. P is rotated anti-clockwise about the origin O through 270° to P^{\prime}. Q is translated leftwards by k units to Q^{\prime}.
(a) Write down the coordinates of P^{\prime}.
(b) Suppose $P^{\prime} O Q^{\prime}$ is a straight line. Find k.
(4 marks)
8. The stem-and-leaf diagram below shows the distribution of the scores (in marks) of 20 students in a Mathematics Test.

Stem (10 marks)	Leaf (1 mark)			
5	$a 3$	7		
6	$0 \quad 2$	34	45	8
7	13	67	78	8
8	24	$6 b$		

It is given that the range and the mean of the score distribution are 34 marks and 70.2 marks respectively.
(a) Find a and b.
(b) If a student is randomly selected from the 20 students, find the probability that the score of the selected student in the Mathematics Test is divisible by 4 .
\qquad

Answers written in the margins will not be marked.
9. In Figure 1, $A B C D$ is a parallelogram. E is a point lying on $A B$ produced . F is a point lying on $C D$ produced. Also, $B E=D F$.

Figure 1
(a) Prove that $\triangle A C E \cong \triangle C A F$.
(b) Suppose $A F=20 \mathrm{~cm}, A C=15 \mathrm{~cm}, B E=10 \mathrm{~cm}$ and $\angle A C B=\angle A B C$. Find the area of $\triangle A C E$ (5 marks)
\qquad

Answers written in the margins will not be marked.

SECTION A (2) (35 marks)

10. The total publishing cost of books is $\$ C$. It is given that C is the sum of two parts, one part is a constant and the other part varies directly as n, where n is the number of books that are published. When $n=4000, C=152000$; when $n=6000, C=222000$.
(a) When the publishing cost per book is $\$ 40$, find the number of books that are published.
(b) Now, 5000 books are published and the selling price of each book is $\$ 42$. The publisher claims that there is a loss even when all the published books are sold. Do you agree? Explain your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad Na_
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answers written in the margins will not be marked.
11. Consider the circle $C: x^{2}+y^{2}-12 x-16 y-69=0$. Let X be the centre of C.
(a) Write down the coordinates of X and the radius of C.
(b) The straight line $L: 3 x-4 y-11=0$ and C intersect at two points A and B. A moving point P is equidistant from A and B. Denote the locus of P by Γ. Given that Γ cuts the x-axis and the y-axis at H and K respectively. Denote the origin by O. Someone claims that the area of $\triangle O H K$ is smaller than $\frac{1}{4}$ of the area of circle C. Is the claim correct? Explain your answer.
(4 marks)

Answers written in the margins will not be marked.
12. The following table shows the distribution of the numbers of group members joining the package tour provided by a travel agent. It is given that the median of the numbers of group members is 2.5 . Also, $a>10,3<c<8$ and there are 28 groups in which the number of group members is less than or equal to 3 .

Number of group members	1	2	3	4	5
Number of groups	9	a	b	c	5

(a) Find a, b and c.
(b) Two more groups now join the package tour. It is found that the numbers of group members of these two groups are different and the range of the numbers of group members remains unchanged. Find the least possible value and the greatest possible value of the standard deviation of the numbers of group members.

13. Figure 2 shows a vessel which is made by putting a cylinder on the top of a frustum. The height of the vessel is 31 cm , the upper base radius and the lower base radius of the frustum are 10 cm and 15 cm respectively. It is given that the capacities of the cylinder and the frustum are the same.

Figure 2
(a) Find the capacity of the frustum.
(b) $0.007 \mathrm{~m}^{3}$ of water is now poured into the vessel. David claims that the depth of the water is greater than half of the height of the vessel. Is the claim correct? Explain your answer. (3 marks)
\qquad

Answers written in the margins will not be marked.

14. Let $\mathrm{p}(x)$ be a polynomial with the degree of 3 . It is given that $\mathrm{p}(-2)=\mathrm{p}(3)=0, \mathrm{p}(1)=-18$ and $p(2)=-20$.
(a) Find $\mathrm{p}(x)$.
(5 marks)
(b) How many rational roots does the equation $\mathrm{p}(x)=3 x-9$ have? Explain your answer.
(4 marks)

SECTION B (35 marks)

15. The mean and the standard deviation of the test scores obtained by a class of students in a test are 38 marks and 10 marks respectively. Due to the poor performance, the test score of each student is adjusted such that each score is increased by 10% and then extra 8 marks are added. The original standard score of Kelly in the test is -0.1 . She claims that her standard score will be positive after the score adjustment. Do you agree? Explain your answer.
(3 marks)
\qquad

Answers written in the margins will not be marked.
16. There are three departments A, B and C in a company. It is given that there are 4 supervisors, 4 supervisors and 5 supervisors in each of these three departments respectively. 7 people are randomly selected from the 13 supervisors to form a committee.
(a) Find the probability that the numbers of supervisors from departments A and B are the same in the committee.
(b) It is given that the numbers of supervisors from departments A and B are the same in the committee, find the probability that the number of supervisors from department C in the committee is the greatest. (2 marks)
17. The 1 st term and the 6th term of a geometric sequence are 8 and 1944 respectively. Find
(a) the common ratio of the sequence,
(b) the least value of n such that the sum of the first n terms of the sequence is greater than
100000000 .
\qquad
18. Let $\mathrm{f}(x)=-\frac{1}{2} x^{2}+\frac{1}{4} x+1$.
(a) Using the method of completing the square, find the coordinates of the vertex of the graph of $y=\mathrm{f}(x)$. (2 marks)
(b) It is given that the straight line $y=c \quad(c>0)$ and the graph of $y=\mathrm{f}(x)$ intersect at two points P and Q, and the length of the line segment $P Q$ is $\frac{1}{2} c$. Find $c . \quad$ (3 marks)

Answers written in the margins will not be marked.
19. Figure 3(a) shows the base $A B C D$ of a pyramid. It is given that $A B=B C, A D=D C=2 \sqrt{6} \mathrm{~cm}$, $\angle A B C=90^{\circ}$ and $\angle B A D=75^{\circ}$.

Figure 3(a)

Figure 3(b)
(a) Find $A B$.
(b) Figure 3(b) shows a pyramid $V A B C D$ with base $A B C D$. It is given that $V A B$ is an equilateral triangle and $\angle V B C=90^{\circ}$.
(i) Find $V D$.
(ii) Let N be a point lying on $D C$ such that $B N$ is perpendicular to $D C$. Cindy claims that the angle between the plane $V C D$ and the plane $A B C D$ is $\angle V N B$. Is the claim correct? Explain your answer.
\qquad

20. In Figure 4, $A B C$ is an acute-angled triangle. Denote the centroid and the orthocenter of $\triangle A B C$ by G and H respectively. $B H$ is produced to meet $A C$ at $D, C H$ is produced to meet $A B$ at E, $A G$ is produced to meet $B C$ at M. Suppose N is the mid-point of $E D$.

Figure 4
(a) (i) Prove that B, C, D and E are concyclic. Also, prove that the centre of the circle passing through these four points is M.
(ii) Someone claims that $M N \perp E D$. Is the claim correct? Explain your answer.
(4 marks)
(b) A rectangular coordinate system is introduced so that the coordinates of D and E are $(6,3)$ and $(4,4)$ respectively and the equation of $B C$ is $x-7 y=0$.
(i) Find the coordinates of point C.
(ii) It is given that the tangent to the circle $B C D E$ at point C cuts the x-axis and the y-axis at two points P and Q respectively, find the radius of the inscribed circle of $\triangle O P Q$, where O is the origin.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answers written in the margins will not be marked.

END OF PAPER

HOK YAU CLUB
 HONG KONG MOCK EXAMINATION 2016／17

MATHEMATICS Compulsory Part PAPER 2

$12.00 \mathrm{nn}-1.15 \mathrm{pm} \quad$（ $11 / 4$ hours）

INSTRUCTIONS

1．Read carefully the instructions on the Answer Sheet．After the announcement of the start of the examination，you should first stick a barcode label and insert the information required in the spaces provided．No extra time will be given for sticking on the barcode label after the＇Time is up＇ announcement．

2．When told to open this book，you should check that all the questions are there．Look for the words ＇END OF PAPER＇after the last question．

3．All questions carry equal marks．
4．ANSWER ALL QUESTIONS．You are advised to use an HB pencil to mark all the answers on the Answer Sheet，so that wrong marks can be completely erased with a clean rubber．You must mark the answers clearly；otherwise you will lose marks if the answers cannot be captured．

5．You should mark only ONE answer for each question．If you mark more than one answer，you will receive NO MARKS for that question．

6．No marks will be deducted for wrong answers．

Not to be taken away before the end of the examination session

There are 30 questions in Section A and 15 questions in Section B.
The diagrams in this paper are not necessarily drawn to scale.
Choose the best answer for each question.

Section A

1. $(-3)^{2017}\left(\frac{1}{9}\right)^{1009}=$
A. -3 .
B. $-\frac{1}{3}$.
C. $-\frac{1}{9}$.
D. $\frac{1}{3}$.
2. $(x-2)\left(x^{2}-2 x+4\right)=$
A. $x^{3}-8$.
B. $(x-2)^{3}$.
C. $x^{3}-4 x^{2}+8 x-8$.
D. $x^{3}+4 x^{2}-8 x-8$.
3. If $2 m+n+1=m-2 n+5=-1$, then $m+n=$
A. -2 .
B. 0
C. 2 .
D. 4
4. If $0.74496<x<0.74505$, which of the following must be true?
A. $\quad x=0.8$ (correct to 1 significant figure).
B. $\quad x=0.74$ (correct to 2 decimal places).
C. $x=0.745$ (correct to 3 significant figures).
D. $x=0.7450$ (correct to 4 decimal places).
5. If p and q are constants such that $(x+2)^{2}+p \equiv(x-1)(x+q)+3$, then $p=$
A. 5 .
B. -2 .
C. -4 .
D. -6 .
6. The solution of $-2 x+5<13<5 x-2$ is
A. $x>-4$.
B. $x>3$.
C. $-4<x<3$.
D. $x<-4$ or $x>3$.
7. If the roots of the equation $2 x^{2}-x+k=0$ are -1 and β, then $11+2 \beta-4 \beta^{2}=$
A. 5 .
B. 9 .
C. 13 .
D. 17 .
8. The figure shows the graph of $y=p x^{2}+q x-5$, where p and q are constants. Which of the following is true?
A. $\quad p>0$ and $q>0$
B. $\quad p>0$ and $q<0$
C. $\quad p<0$ and $q<0$
D. $\quad p<0$ and $q>0$

9. The weight of Sunny is 20% heavier than that of Clara and 20% lighter than that of Kenny. Then
A. Kenny is 20% heavier than Sunny.
B. Kenny is 40% heavier than Clara.
C. Clara is 50% lighter than Kenny.
D. Kenny is 50% heavier than Clara.
10. $\$ 50000$ is deposited at an interest rate of 2.4% per annum, compounded half-yearly for 3 years. Another $\$ 50000$ is deposited at a simple interest rate of 2.5% per annum for 3 years. Find the difference between the two interests obtained correct to the nearest dollar.
A. $\$ 40$
B. $\$ 63$
C. $\$ 1928$
D. $\$ 3896$
11. Let a, b and c are non-zero numbers. If $\frac{1}{2} a=2 b=3 c$, then $\frac{1}{a}: \frac{1}{b}: \frac{1}{c}=$
A. $12: 3: 2$.
B. $6: 4: 1$.
C. $2: 3: 12$.
D. $1: 4: 6$.
12. It is given that z varies directly as the square of x and inversely as y. If x is increased by 20% and y is decreased by 25%, then z
A. is increased by 8%.
B. is increased by 60%.
C. is increased by 92%.
D. is decreased by 10%.
13. In the figure, the 1 st pattern consists of 3 dots. For any positive integer n, the $(n+1)$ th pattern is formed by adding $n+3$ dots to the nth pattern. Find the number of dots in the 6 th pattern .
A. 19
B. 25

C. 33
D. 42
14. There is a bag of salt. The weight of salt in the bag is measured as 8 kg correct to the nearest kg . If the bag of salt is packed into n packets such that the weight of salt in each packet is measured as 15 g correct to the nearest g , find the least possible value of n.
A. 483
B. 484
C. 517
D. 548
15. In the figure, $A B C D E$ is a regular pentagon and $C D F G$ is a square, $\angle A B G=$
A. $\quad 18^{\circ}$.
B. 24°.
C. 25°.
D. $\quad 27^{\circ}$.

16. In the figure, E is the mid-point of $A C$ and F is a point lying on $A D$. If $A B=20 \mathrm{~cm}$, $D E=10 \mathrm{~cm}, F D=3 \mathrm{~cm}$ and $C F=13 \mathrm{~cm}$, then the area of $\triangle A B C$ is
A. $\quad 48 \mathrm{~cm}^{2}$.
B. $\quad 96 \mathrm{~cm}^{2}$.
C. $\quad 160 \mathrm{~cm}^{2}$.
D. $\quad 192 \mathrm{~cm}^{2}$.

17. In the figure, the sector is folded to form a circular cone. Find the volume of the circular cone.

A. $\quad 96 \pi \mathrm{~cm}^{3}$
B. $120 \pi \mathrm{~cm}^{3}$
C. $288 \pi \mathrm{~cm}^{3}$
D. $360 \pi \mathrm{~cm}^{3}$
18. In the figure, $A B C D$ is a parallelogram. E is a point lying on $B C$ such that $B E: E C=3: 2$. If the area of $\triangle E C F$ is $96 \mathrm{~cm}^{2}$, then the area of $\triangle A D E$ is
A. $\quad 144 \mathrm{~cm}^{2}$.
B. $\quad 192 \mathrm{~cm}^{2}$.
C. $\quad 216 \mathrm{~cm}^{2}$.
D. $\quad 360 \mathrm{~cm}^{2}$.

19. In the figure, $\frac{A C}{D B}=$
A. $\quad \sin \beta \tan \alpha$.
B. $\cos \beta \tan \alpha$.
C. $\frac{\tan \alpha}{\sin \beta}$.

D. $\frac{\tan \alpha}{\cos \beta}$.
20. $\frac{\cos 0^{\circ}+\cos \left(90^{\circ}-\theta\right)}{\sin \left(90^{\circ}+\theta\right)}-\frac{\cos \left(180^{\circ}+\theta\right)}{1-\sin \left(360^{\circ}-\theta\right)}=$
A. $\frac{\cos \theta}{2}$.
B. $\frac{2}{\sin \theta}$.
C. $\frac{2}{\cos \theta}$.
D. $\frac{2}{\cos \theta(1-\sin \theta)}$.
21. In the figure, O is the centre of the circle $A B C D E$. If $\angle O C D=46^{\circ}$ and $\angle A B C=123^{\circ}$, then $\angle A E D=$
A. $\quad 80^{\circ}$.
B. 101°.
C. 103°.
D. $\quad 123^{\circ}$.

22. If the sum of the interior angles of a regular polygon is 1440°, which of the following are true?
I. Each interior angle of the polygon is 135°.
II. The number of diagonals of the polygon is 35 .
III. The number of folds of rotational symmetry of the polygon is 10 .
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
23. The rectangular coordinates of the point P are $(1,-\sqrt{3})$. If P is reflected with respect to the x-axis and then rotated clockwise about the origin through 270°, then the polar coordinates of its image are
A. $\left(1,120^{\circ}\right)$.
B. $\left(1,150^{\circ}\right)$.
C. $\left(2,120^{\circ}\right)$.
D. $\left(2,150^{\circ}\right)$.
24. The coordinates of the points A and B are $(6,0)$ and $(0,8)$ respectively. If P is a moving point in the rectangular coordinate plane such that $P A \perp P B$, then the locus of P is
A. the perpendicular bisector of $A B$.
B. the straight line which passes through A and B.
C. the angle bisector of $\angle A O B$, where O is the origin .
D. the circle with $A B$ as a diameter, excluding the points A and B.
25. If straight lines $2 x-y+4=0$ and $m x+n y+2=0$ are perpendicular to each other at a point on the x-axis, then $n=$
A. -2 .
B. -1 .
C. 1 .
D. 2 .
26. The equation of the circle is $\frac{1}{2} x^{2}+\frac{1}{2} y^{2}-3 x+5 y+9=0$. Which of the following are true?
I. The coordinates of the centre of the circle are $(3,-5)$.
II. The circle and the y-axis intersect at two distinct points.
III. The origin lies inside the circle.
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
27. There are four balls numbered $1,4,6$ and 15 in a bag. If two balls are randomly drawn from the bag, find the probability that the product of the numbers drawn is not a multiple of 3 .
A. $\frac{1}{6}$
B. $\frac{1}{4}$
C. $\frac{1}{2}$
D. $\frac{5}{6}$
28. There are five $\$ 20$ paper notes, four $\$ 50$ paper notes and one $\$ 500$ paper note in a wallet. A paper note is randomly drawn from the wallet. Find the expected value of the paper note.
A. 20 dollars
B. 50 dollars
C. 80 dollars
D. 190 dollars
29. The scatter diagram below shows the relation between x and $\frac{1}{y}$. Which of the following represents the relation between x and y ?
A. When x increases, y decreases.

30. Consider the following data :

11	18	12	14	14	20	7	16	10	p	q

If the mean and the median of the above data both are 14 , which of the following must be true?
I. $p+q=32$
II. $\quad p \geq 14$
III. $q \leq 18$
A. I only
B. I and II only
C. I and III only
D. I, II and III

Section B

31. $\frac{1}{x^{2}-2 x+1}-\frac{1}{x^{2}-1}=$
A. 0 .
B. $\frac{2}{(x-1)(x+1)}$.
C. $\frac{2}{(x-1)^{2}(x+1)}$.
D. $\frac{2 x}{(x-1)^{2}(x+1)}$.
32. The graph in the figure shows the linear relation between x and $\log _{\frac{1}{2}} y$. If $y=a b^{x}$, then $a=$
A. $\frac{1}{16}$.
B. $\frac{1}{4}$.
C. $\frac{1}{2}$.
D. 16 .

33. $5 \times 2^{7}+2^{5}+17=$
A. 1001110001_{2}.
B. 1001101001_{2}.
C. $\quad 1010101001_{2}$.
D. 1010110001_{2}.
34. Let $u=\frac{i}{a+i}$ and $v=\frac{i}{a-i}$, where a is a real number. Which of the following must be true?
I. $u v$ is a real number.
II. The imaginary part of u is equal to the imaginary part of v.
III. The real part of $\frac{1}{u}$ is equal to the real part of $\frac{1}{v}$.
A. I only
B. II only
C. I and II only
D. II and III only
35. Which of the following systems of inequalities will make $p=2 x-3 y$ have both maximum and minimum values?
A. $\left\{\begin{array}{l}x \geq 0 \\ y \geq 0 \\ 3 x-2 y \leq 6\end{array}\right.$
B. $\left\{\begin{array}{l}x \leq 0 \\ y \leq 0 \\ 3 x-2 y \geq 6\end{array}\right.$
C. $\left\{\begin{array}{l}x \geq 0 \\ y \geq 0 \\ 3 x-2 y \geq 6\end{array}\right.$
D. $\left\{\begin{array}{l}x \geq 0 \\ y \leq 0 \\ 3 x-2 y \leq 6\end{array}\right.$
36. Let a, b and c be positive numbers and $b^{2}=a c$. Which of the following must be true?
I. $\log a, \log b, \log c$ is an arithmetic sequence.
II. $\quad 2^{a}, 2^{b}, 2^{c}$ is a geometric sequence.
III. a^{m}, b^{m}, c^{m} is a geometric sequence, where m is a positive integer.
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
37. For $0^{\circ} \leq x \leq 360^{\circ}$, how many roots does the equation $\sin x\left(3 \cos ^{2} x+4 \cos x-4\right)=0$ have?
A. 2
B. 3
C. 4
D. 5
38. Let a and k be constants and $-90^{\circ}<\theta<90^{\circ}$. The figure shows the graph of $y=a \cos \left(x^{\circ}+\theta\right)+k$. Find the values of a, θ and k.
$\begin{array}{lccc} & \underline{a} & \underline{\theta} & \underline{k} \\ \text { A. } & 2 & 20^{\circ} & 1 \\ \text { B. } & 2 & 50^{\circ} & 1 \\ \text { C. } & -2 & 20^{\circ} & 1\end{array}$
D. $\quad-2 \quad 20^{\circ} \quad 3$

39. In the figure, $P Q$ is a vertical pole standing on the horizontal ground $A Q B$, where $\angle A Q B=90^{\circ}$. If the angle between the plane $P A B$ and the horizontal plane is θ, then $\tan \theta=$
A. $\frac{2}{3}$.
B. $\frac{15}{26}$.
C. $\frac{8}{5}$.
D. $\frac{26}{15}$.

40. In the figure, $A B$ is a diameter of the circle. $T P$ touches the circle at $P . A B R$ and $P Q R$ are straight lines. If $\angle A R P=24^{\circ}$ and $\angle R P T=44^{\circ}$, then $\angle A Q P=$
A. 22°.
B. 35°.
C. $\quad 46^{\circ}$.
D. 48°.

41. Find the equation of the circle with its centre at the point $(3,-1)$ and touching the straight line $3 x+4 y+5=0$.
A. $x^{2}+y^{2}+6 x-2 y+6=0$
B. $x^{2}+y^{2}-6 x+2 y+6=0$
C. $x^{2}+y^{2}-6 x+2 y+8=0$
D. $x^{2}+y^{2}-6 x+2 y+9=0$
42. Bag A contains 3 red balls and 2 white balls while bag B contains 2 red balls and 4 white balls. If one ball is randomly drawn from bag A and put into bag B , then one ball is randomly drawn from bag B and put into bag A. Now, a ball is randomly drawn from bag A, the probability of drawing a red ball is
A. $\frac{43}{175}$.
B. $\frac{51}{175}$.
C. $\frac{97}{175}$.
D. $\frac{3}{5}$.
43. 5 girls and 4 boys sit in a row. If only two boys sit next to each other, find the number of permutation.
A. 43200
B. 86400
C. 172800
D. 362880
44. The stem-and-leaf diagram below shows the distribution of the scores (in marks) of a group of students in a test.

Stem (tens)	Leaf (units)				
3	1	6	7	9	
4	2	2	7	8	
5	2	6	6	7	9
6	0	4	4		
7	3	4	8		
8	5				

Which of the following are true?
I. The inter-quartile range of the distribution is 22 marks.
II. There is no student with standard score less than -2 .
III. There are 3 students whose standard scores are above 1.3 .
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
45. The standard deviation of the five numbers $-3 a+b,-3 a+5 b,-3 a-3 b,-3 a+9 b$ and $-3 a-7 b$, where $b>0$, is
A. $\quad 4 \sqrt{2} b$.
B. $2 \sqrt{10} b$.
C. $\frac{24}{5} b$.
D. $32 b$.

END OF PAPER

